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ABSTRACT. Background: Based on the concept of Industry 4.0, or the fourth industrial revolution, production 
processes are optimised by machines connected to each other via intelligent communication systems (machines keep 
track of the process and adjust their own settings accordingly). Our objective was to achieve more reliable processes with 
shorter production times and, consequently, lower production costs.  
Methods: We examined the possibility of incorporating a robot into the panel cutting subprocess of the unique furniture 
manufacturing process of a timber company.  
Results: Currently, using robots in industrial practice is economical only in the case of mass production. Using robots in 
unique manufacturing calls for higher resource need. In order to examine which part of the furniture manufacturing 
process a robot can be incorporated into and what problems can be solved with the robotic arm, the first step is to look for 
any potential failures in the process, as well as causes of failure, by performing a process model-based Failure Mode and 
Effects Analysis. Following the exploration of potential causes of failure, we examined the possibility of involving 
a robotic arm as a measure of improvement. Accordingly, the robotic arm was programmed in a computerised 
environment. The parameters of the robotic arm were set using the software Mitsubishi RV-2AJ Cosimir Educational. As 
a next step, process simulation was used to examine the total production time and cost of the process with using the 
robotic arm.  
Conclusions: The implementation of robots is a relevant option in unique production systems, as an intelligent system is 
capable of identifying problems even at the origin of failures and therefore it allows to avoid delay and increase the 
precision of operation. 
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INTRODUCTION 

In order to remain competitive in 
a globalised environment, manufacturing 
companies constantly need to evolve their 
production systems and accommodate the 
changing demands of markets [Pedersen et al., 
2006]. 

The panel cutting process performed by the 
unique furniture manufacturing timber 
company in question is inappropriate. There 
are numerous failures in the process, resulting 
in high total process costs and frequent repairs. 
As a result of re-cutting, the process takes 

more time than planned. For this reason, we 
considered it to be necessary to revise the 
process, as well as to identify and eliminate 
any possible failures and causes of failure. 
During the panel cutting process, smaller 
panels are cut out of large panels of 2800 x 
2070 mm in order to fit the furniture to be 
manufactured. The pieces cut from large 
panels are placed in bins to be taken out when 
they are used for the given piece of furniture. 
According to our observations, most problems 
appear during the sorting of the cut panel 
pieces. For this reason, we focused our 
development on the sorting phase. The panel 
cutting process was identified with a process 
model and a Failure Mode and Effects 
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Analysis, based on which the improvement 
measure was determined. As a solution, 
we used a Mitsubishi robotic arm equipped 
with sensory support. After determining the 
improvement measure, its efficiency was 
examined in Cosimir, a modelling and 
simulation software. As the last step, we 
examined the total production time of the 
process with a Monte-Carlo-based process 
simulation to determine the process cost. 

LITERATURE REVIEW 

Industry 4.0 

Today, in an Industry 4.0 factory, machines 
are connected as a collaborative community. 
Such evolution requires the use of advance 
prediction tools, so that data can be processed 
systematically into information to explain 
uncertainties, and thereby make more informed 
decisions [Bildstein et al., 2014]. It can be 
concluded that the term Industry 4.0 describes 
different – primarily Information Technology 
(IT) driven – changes in manufacturing 
systems. These developments do not only have 
technological but furthermore versatile 
organisational implications [Lasi et al., 2014]. 
Future production systems have to be 
developed considering the need for strong 
product individualisation and, therefore, the 
necessity for highly flexible production 
processes [Schlechtendahl et al., 2015]. To 
accomplish this challenge, Cyber Physical 
Production Systems (CPPSs) [5] should be 
integrated into the production sites in order to 
create smart factories. Cyber Physical Systems 
(CPS) are central to this vision and are entitled 
to be part of smart machines, storage systems 
and production facilities able to exchange 
information with autonomy and intelligence 
[Reinhart et al., 2013]. These CPS monitor the 
physical processes, make decentralised 
decisions and trigger actions, communicating 
and cooperating with each other and with 
humans in real time. This facilitates 
fundamental improvements to the industrial 
processes involved in manufacturing, 
engineering, material use and supply chain and 
life cycle management [Toroa et al., 2015]. 

Kagermann et al. [2013] propose 
a production model which is capable of 

establishing inter-machine communication 
with proper server service and cloud-based 
data storage. The data generated by machines, 
robots and sensors during production have to 
be stored and processed. As a result, it is 
possible to establish a smart factory which is 
able to react flexibly to environmental 
changes. 

According to the concept of Industry 4.0, 
which represents the fourth industrial 
revolution, each product component plays an 
important role in the management of 
manufacturing and logistics processes. 
Intelligent systems keep track of where and 
when each component was built and what 
packaging and transport the given product 
needs. During production, sensors perform 
self-checks and the system gives a signal if 
something differs from the previously set 
values. Also, the system is capable of 
intervening and correcting failures. 

Smart Factory 

The proliferation of cyber-physical systems 
introduces the fourth stage of industrialisation, 
commonly known as Industry 4.0. The vertical 
integration of factory to implement flexible 
and reconfigurable manufacturing systems, i.e. 
smart factory, is one of the key features of 
Industry 4.0. Thus, the smart factory is 
characterised by the self-organised multi-agent 
system assisted with big data based feedback 
and coordination. Based on this model, we 
propose an intelligent negotiation mechanism 
for agents to cooperate with each other 
[Rajenthirakumar et al., 2014]. 

Smart Factory, which is the fourth 
revolution in the manufacturing industry and is 
also considered as a new paradigm, is the 
collection of cutting-edge technologies that 
support effective and accurate engineering 
decision-making in real time through the 
introduction of various information and 
communication technologies and the 
convergence with existing manufacturing 
technologies [Chen, 2007]. 

The successful integration of Industry 4.0 
and cyber-physical systems provides 
significant benefits for the entire 
manufacturing industry. These benefits can be 
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summarised in one term the so-called: Smart 
Factory [Bowles, Peláez, 1995]. Nowadays, 
smart factories focus mostly on control-centric 
optimisation and intelligence. Moreover, 
greater intelligence can be achieved by 
interacting with different surrounding systems 
that have a direct impact on machine 
performance. Achieving such seamless 
interaction with surrounding systems turns 
regular machines into self-aware and self-
learning machines, and consequently improves 
overall performance and maintenance 
management [Rhee, Ishii, 2003]. 

Process development 

Process development has three 
interconnected areas: organisation, technology 
and process. The main purpose of process 
development is to establish a process which 
conforms to organisational and technological 
factors and achieves the desired outcome by 
involving key players and taking all three areas 
into consideration. Various quality 
improvement techniques can be used during 
process development. Failure Mode and Effect 
Analysis (FMEA) also has a wide range of 
industrial uses. 

FMEA is used to identify failure modes. 
Failure modes are the ways, or modes, in 
which an asset can fail [Sharma et al., 2015]. It 
is a method that evaluates possible failures in 
the system, design, process or service. It aims 
to improve and decrease these kinds of failure 
modes continuously [Gilchrist et al. 1993, 
Vandenbrande 1998, Chin et al. 2009, Chang, 
Cheng 2010,]. In particular, it provides design 
engineers with quantitative or qualitative 
measures necessary to guide the 
implementation of corrective actions by 
focusing on the main failure modes and its 
impact on the products [Vliegen, van Mal 
1990]. 

Since its introduction as a support tool for 
designers, FMEA has been extensively used in 
a wide range of industries, including 
aerospace, automotive, nuclear, electronics, 
chemical, mechanical and medical 
technologies industries [Puente et al 2002, 
Kwai-Sang et al. 2009, Guerrero, Bradley 
2013, Wenyan et al. 2014, Yeh et al. 2014, 
Neagoe 2011, Jianpeng et al. 2015]. Moreover, 

FMEA is now used not only in manufacturing 
processes, but also in service and 
administrative processes [Gao et al. 2014]. 
FMEA is also a good tool to provide support 
information for making risk management 
decisions [Sellappan, Sivasubramanian 2008, 
Hu et al. 2009]. FMEA analyses have been 
used to enhance the R&D, design, production, 
testing and maintenance of innovative products 
[Stamatis 2003]. A good FMEA can help 
analysts identify known and potential failure 
modes and their causes and effects, help them 
prioritise the identified failure modes and can 
also help them work out corrective actions for 
the given failure modes [Kwai-Sang et al., 
2003]. Neagoe [2011] the FMEA methodology 
requires a team effort, in-depth knowledge of 
the various designs and processes, as well as 
time and financial expenses. The global 
industry-wide integration of the FMEA as 
a reliability management process is due to the 
proved efficiency of the method, as well as the 
simplicity and transparency of the analysis. 

Traditional FMEA has three types: design, 
concept and process FMEA. The main purpose 
of FMEA is to reveal and identify failures, as 
well as to rank them based on their effect. This 
procedure calls for teamwork and the team 
should consist of individuals from various 
professional fields. Parameters are assigned to 
the causes of failure revealed in the 
methodology and their respective failure 
modes [Gao 2014, Jianpeng 2015]. The 
following parameters are used: 
− S=Severity: severity of the effect of the 

failure mode. 
− O=Occurrence: frequency of the occurrence 

of the failure mode. 
− D=Detection: detectability of the failure. 

The product of the values assigned to these 
parameters results in the so-called Risk Priority 
Number (RPN) which serves the ranking of 
failures. Values assigned to these parameters 
are provided on a scale from 1 to 10 [Hu et al., 
2009].  

The mathematical formula for calculating 
the conventional RPN is questionable and 
debatable [Sellappan, Sivasubramanian 2008]. 
Why S, O, and D should be multiplied to 
produce the RPN, but not other numerical 
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operations. The simple multiplication in 
conventional FMEA may produce RPN with 
exactly the same value from different products 
of S, O and D, which may lead to confusion for 
failure modes ranking [Sellappan, 
Sivasubramanian 2008]. Based on their RPN 
ranking, it is decided whether an improvement 
action needs to be implemented in order to 
reduce the RPN. The issue is to find the 
threshold that triggers this improvement action. 
This problem is therefore better solved with 
a sorting technique, where failures are sorted 
into predefined priority classes. 

RPN = S × O × D   
  

The traditional FMEA procedure consists of 
the following steps: 
− Establishing the team performing the 

analysis. 
− Detecting failures and collecting data: 

identifying potential failure modes, as well 
as their causes and effects, followed by 
their evaluation in terms of severity, 
occurrence and detectability on a scale from 
1 to 10. 

− Analysis: determining the Risk Priority 
Number. 

− Confirmation, working out action plans 
[Stamatis, 2003]. 

A successful development is based on 
a process model. For this reason, it is very 
important to prepare the model of the 
examined field. Proper planning is 
indispensable for running a process without 
any failure. Furthermore, planning is helped by 
process modelling methods which provide 
a visual image of the activities, resources and 
functions that are part of the process, along 
with the correlations between each other. The 
main purpose is to describe the currently 
working system and the requirements of the 
requested system in an accurate way, as well as 
to demonstrate the functioning of the system. 
An event-controlled process chain diagram 
was used in which the running of the process is 
provided by the change of events and 
activities. 

METHODS 

Raising the problem 

The total production time and cost of the 
panel cutting process of unique furniture 
manufacturing are higher than planned. The 
work pieces which were cut off are incorrectly 
distributed and identified. In many cases, it 
takes a long time to look for a certain 
component, as it is put in the wrong place after 
sorting. For this reason, it is necessary to revise 
the process and correct the revealed failures. 

Objectives 

To find any potential failures in the process 
of unique furniture manufacturing and to 
redesign the process in order for identification 
and sorting to be appropriate. 

Method of analysis 

Following the identification of activities, 
regular and expert measurements are carried 
out to determine the time and cost data of 
activities. As a next step, the prepared process 
model provides a basis for the FMEA, during 
which potential causes of failure are identified. 
Activities eliciting failures are then 
incorporated into the model. As a result, the 
running of the process becomes more reliable. 
During the next step, the time and cost of 
running the process are determined. 
A corrective measure is taken on the basis of 
the FMEA. This measure is converted into an 
activity and built into the model. Accordingly, 
the cost and duration of the new process can be 
determined. 

RESULTS 

Description of the current process 

In the examined company, the base material 
is transported to the panel cutting area after the 
order has arrived. In the panel cutting area, an 
employee cuts out the work pieces in 
accordance with the cutting list. This employee 
or another one puts the work piece into the bin 
in accordance with the given project or it is 
transported to the edging area and then put into 
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a bin. Three or four projects are being carried 
out in the plant simultaneously; therefore, the 
panel cutting department performs the cutting 
duties of the various projects at the same time. 
The following failures were revealed during 
the current process: the work pieces cut out by 
the employees were not put into their correct 
places; therefore, once they would need to be 

used, employees have to look for them or re-
cut them. It can be concluded that the 
examined process is completely linear and 
failures are not indicated. However, in order to 
reveal failures, a more thorough analysis is 
necessary. 

 
 Fig. 1. The basic process model 
 Rys. 1. Model podstawowego procesu      
 
 

 Fig. 2. The failure process model 
 Rys. 2. Model procesu niepowodzenia   
 
   

Two failure modes were identified in the 
process using the FMEA method. 

The first identified failure is that the 
incorrect size is cut out (Table 1). The reason 
for this failure is either a wrong initial size, 
wrong cutting list or the slipping of the 
equipment when the panel is being pushed. 
Each cause of failure has eight different 
weights, as wrong sizes either need to be 
corrected or re-cut. The occurrence factor of 
this failure was rated to be 3 and 4. During the 
research, it was concluded that this problem 

occurred in the case of 10-15% of all work 
pieces. The second identified failure was 
observed during the process of building in 
a work piece. This failure originated in 
a previous activity. The given work piece 
cannot be found during the assembly process. 
This problem originated from the phase of 
putting work pieces into bins. One of the 
causes of this failure was that the employee 
was tired and put the work piece into 
a different bin. It might also have happened 
that the bin into which the work piece was put 
was incorrectly labelled. The most common 
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problem is that the employee at the end of the 
line who puts the work piece in its place did 
not properly communicate with the employee 

performing the cutting; therefore, the work 
piece is put in the wrong place. 

 
Table 1. FMEA sheet 

Tabela 1.  Arkusz FMEA  

 
 
 

The detected failures and their respective 
RPN values are shown in Table 1. The RPN 
limit is 120, values higher than this are 
considered to be critical failures. 

Figure 2 shows the activities causing failure 
that are built into the process model, as well as 
the activities which need to be corrected. This 
is not a linear process anymore. Once there is 
a failure, an XOR operator divides the process 
into two. 

Describing the correction process 

This section aims at the corrective actions 
in relation to the observed problems. At the 
end of the panel cutting process, the activities 
of sorting and putting work pieces into bins 
were performed by a robot (Mitsubishi RV-
2AJ) instead of the employee. With the help of 
sensors, the robot placed each work piece into 
its correct bin. Furthermore, the robot uses an 
image processing diagnostic tool during the 
process of loading to keep track of each work 
piece and provide feedback on whether it is of 
the correct size based on previously set 
parameters. Also, the robot is able to perform 
calculations based on the sizes of the panels 
which were loaded in and determine whether 
the given furniture can be manufactured using 
the work pieces of the given size. 

The movements performed by the robot 
were programmed, modelled and simulated 
using the software Cosimir Educational. The 
program consisted of the following steps: 
adding objects, positioning objects, sizing 
objects, indexing outputs, indexing inputs, 
assigning inputs to outputs, setting robotic arm 
positions, programming robotic movement, 
failure control, running. 

 
 

 
 
Fig. 3. Basic settings of the 3D model 
Rys. 3. Podstawowe założenia modelu 3D      
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The employee places the work pieces which 
were cut out on the assembly line at the end of 
the panel cutting machine. The examined work 
pieces approach the sensor which identifies 
them. Based on the sensory data, the robot puts 
the work piece into the appropriate bin. In the 
model, this activity is performed using 
a simple colour sensor. The three bins placed 
next to the robot represent the project bins of 
the three active projects. The small bins on the 
assembly line represent the different work 
pieces. 

In the case of the basic settings, work 
pieces are correctly lined up and they start to 
move once the program starts to run. The 
assembly line stops if a work piece reaches the 
sensor. The robot takes the given piece and 
puts it in its correct place in accordance with 
the program. The assembly line is restarted and 
runs until the next bin reaches the sensor. This 
is an endless cycle which stops only when the 
program is stopped. 

 
Fig. 4. Process of placing work pieces on top of each 

other 
Rys. 4. Proces ułożenia elementów jeden na drugim 

Two solutions were found for the sorting 
problem. The first is a simple solution: the 
employee performing the cutting duties labels 
the work pieces. The sensor detects and reads 
the label and sends a signal to the robot with 
the instruction where exactly to put the given 
work piece. The second solution is more 
complex, as it is based on programming in the 
values of the cutting list. The camera mounted 
on the robot identifies the work pieces once 
they get there, measures them and compares 
their size to the pre-programmed cutting list in 
order to determine which bin the given work 

piece has to be put into. This research focuses 
on the first, more simple development. 

The program is structured the following 
way (Figure 4): the colour sensor sends 
a signal to the respective led based on the 
colour of the bin being sensed. The led sends a 
signal to the robot and activates the subroutine 
(program segment) which places the work 
piece into the bin. Three projects are running 
for the purpose of carrying out the sorting 
duty; therefore, one subroutine is assigned to 
each of the three leds for the three bin colours. 
If any of the leds receives the signal, the 
subroutine starts by moving the robotic arm 
into the P2 position where the work piece can 
be found. The robotic arm picks up the work 
piece and puts it into the correct bin. As a next 
step, the program returns to the beginning of 
the routine and restarts. A single bin contains 
work pieces of the same thickness and, since 
they have to be placed on top of each other, the 
robotic arm puts each work piece -50 units 
above the other in the bin. In order to do this, 
we introduced variables. Variables are 
assigned to each project and, consequently, 
each bin. The value of variables is 0 when the 
program starts. If the robotic arm already puts 
a work piece into the bin, +1 is added to the 
variable of the respective bin. As a result, the 
robotic arm will put the work piece to a higher 
position in the subsequent round. 

The solution described above makes this 
part of the production process reliable, while 
the sorting activity will be accurate, efficient 
and quick. Therefore, the probability of the 
second failure in the process is reduced almost 
to zero. The only problem may arise from the 
non-compliance of the cutting list. However, 
the second, more complex version of the robot 
program provides a solution to this problem, as 
the robot identifies the work piece using 
a camera and based on laser sensory 
measurement. In this case, if any deviation is 
observed, the robot is able to give a signal 
immediately; therefore, it is possible to detect 
the problem in time. 

The result of the simulation is shown in 
Figure 1. If the employee performs the sorting 
activity in the process, the total process time is 
6.15 minutes. An average piece of furniture 
consists of around 550 components. Seven 
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days are needed for cutting and sorting these 
components if the employee is responsible for 
the sorting. However, if a robot is incorporated 
into the process, the amount of time needed for 
cutting and sorting a work piece is reduced to 
4.41 minutes and the total amount of time to be 
saved is five days in the case of 550 
components. 

 
Fig. 5. Total process time in the case of a robot and 

human operator 
Rys. 5. Całkowity czas procesu w przypadku 

operatora ludzkiego i robota 
 
 

 
 
Fig. 6. Amount of time needed for sorting and cutting 

550 work pieces 
Rys. 6. Czas potrzebny na sortowanie i przycinanie 

550 elementów 

Therefore, if a robot is used in the process 
of manufacturing an average piece of furniture 
(25 m2 material surface), the necessary 
components can be prepared and put to their 
correct places in only five days instead of 
seven. During the conventional process, two 
pieces of furniture can be manufactured in 21 
days, while the new process makes it possible 
to manufacture three pieces of furniture within 
the same period. Consequently, it can be 
concluded that using robots is a relevant option 
in unique production, since a proper 
identification system and sensors make it 
possible to perform quicker and more efficient 
processes. 

CONCLUSIONS 

It was concluded from this research that 
using robots is a relevant option in unique 
production systems, as an intelligent system is 
capable of identifying problems even at the 
origin of failures. In conventional systems, the 
production process is not necessarily stopped 
when a failure occurs and sometimes faulty 
work pieces are detected only at the assembly 
stage. In mass production, such problems are 
solved by simply reaching for another work 
piece and building them in. However, in the 
case of unique production, each work piece is 
different; therefore, they need to be 
manufactured again. Since time is money, the 
timely detection of failures is a strategic issue, 
especially in the case of SMEs.  
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POTENCJALNE POŁĄCZENIE PRODUKCJI JEDNOSTKOWEJ ORAZ 

INDUSTRY 4.0 

STRESZCZENIE. Wstęp: W oparciu o koncepcję Industry 4.0, nazywaną również czwartą rewolucją przemysłową, 
procesy produkcyjne są zoptymalizowane przy użyciu maszyn, połączonych ze sobą przez inteligentne systemy 
komunikacyjne (urządzenia rejestrują przebieg procesu i dostosowują odpowiednio swoje działanie). Celem tego badania 
było zwiększenie niezawodności procesu w połączeniu ze skróceniem czasu produkcji, a co z tym związane, niższymi 
kosztami produkcyjnymi. 
Metody: Poddano testom możliwość użycia robota w procesie obróbki cięciem produkcji unikatowych mebli 
drewnianych. 
Wyniki: Obecnie zastosowanie robotów w produkcji ma uzasadnienie ekonomiczne tylko w przypadku produkcji 
masowej. W celu sprawdzenia, w którym etapie obróbki mebla można zastosować robota oraz jaki problemy były by 
możliwe do rozwiązania przy takim sposobie produkcji, w pierwszym etapie ukształtowano proces w oparciu o analizę 
błędów i osiągnięć (Failure Mode and Effects Analysis). Analizując potencjalne możliwości niepowodzenia procesu, 
podjęto próbę użycia ramienia robota jako miernika poprawy. Ramię to zostało zaprogramowane w środowisku 
komputerowym. Parametry ramienia zostały ustawione przy użyciu oprogramowania Mitsubishi RV-2AJ Cosimir 
Educational. Następnie przeprowadzono symulację mierząc całkowity czas produkcji oraz koszty produkcji przy użyciu 
ramienia robota. 
Wnioski: Zastosowanie robotów jest uzasadnioną opcją w systemie produkcji jednostkowej, gdyż jako inteligentne 
urządzenie, jest on w stanie identyfikować problemy nawet u samego źródła ich powstawania.  

Słowa kluczowe: Failure Mode and Effects Analysis, Industry 4.0, oprogramowanie cosimir, robot sortujący, 
zautomatyzowana produkcja 

 

POTENZIELLE VERBINDUNG VON EINZELPRODUKTION MIT 

DEM INDUSTRY 4.0-KONZEPT 

ZUSAMMENFASSUNG. Einleitung: In Anlehnung an das Industry 4.0-Konzept, das auch als die 4. Industrie-
Revolution genannt wird, werden Fertigungsprozesse anhand von Maschinen, die mit Hilfe von intelligenten 
Kommunikationssystemen miteinander verbunden sind (die Einrichtungen verfolgen den jeweiligen Prozessverlauf und 
passen dementsprechend ihre Einwirkung an), optimiert. Das Ziel der betreffenden Forschung war es, die Zuverlässigkeit 
des Fertigungsprozesses in Verbindung mit der Verkürzung der Fertigungszeit und den damit verbundenen, niedrigeren 
Produktionskosten zu erhöhen.  
Methoden: Es wurde die Möglichkeit der Inanspruchnahme eines Fertigungsroboters im Sägeverfahren bei der Fertigung 
von einzigartigen Möbelstücken aus Holz durchgetestet. 
Ergebnisse: Die Inanspruchnahme von Fertigungsrobotern ist heutzutage nur im Falle einer Massenproduktion 
wirtschaftlich begründet. Zwecks der Überprüfung, auf welcher Etappe der Behandlung eines Möbelstückes ein 
Fertigungsroboter eingesetzt und welche Probleme bei einer solchen Produktionsweise gelöst werden könnten, wurde 
einleitend der Fertigungsprozess in Anlehnung an die Analyse von Mängeln und Leistungen (Failure Mode and Effects 
Analysis) ausgestaltet. Anhand der Analyse von potenzialen Gefahren des Scheiterns eines konkreten 
Fertigungsprozesses wurde ein Versuch der Inanspruchnahme eines Roboterarmes als Maßstab einer Rationalisierung 
unternommen. Der Fertigungsarm wurde anhand einer Computer-Software einprogrammiert. Die Parameter des 
Roboterarmes wurden unter Anwendung der Software Mitsubishi RV-2AJ Cosimir Educational installiert. Demzufolge 
wurde anhand des Roboterarmes eine Simulation mit Auswertung der Gesamtproduktionszeit und der betreffenden 
Fertigungskosten durchgeführt.  
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Fazit: Der Einsatz der Fertigungsroboter stellt eine mögliche und begründete Option bei der Einzelfertigung dar, denn sie 
als intelligente Einrichtungen sind imstande, die Probleme selbst an ihrem Entstehungsursprung zu identifizieren. 

Codewörter: Failure Mode and Effects Analysis, Industry 4.0, Software Cosimir, Sortierroboter, Fertigungsroboter, 
automatisierte Fertigung  
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