
Copyright: Wyższa Szkoła Logistyki, Poznań, Polska

Citation: Worwa K., 2018. Optimizing the structure of the software systems supporting logistics on the stage of its design.

LogForum 14 (2), 209-219, http://dx.doi.org/10.17270/J.LOG.2018.259

Received: 26.10.2017, Accepted: 12.03.2018, on-line: 29.03.2018.

 LogForum
 > Scientific Journal of Logistics <

 http://www.logforum.net p-ISSN 1895-2038

2018, 14 (2), 209-219

http://dx.doi.org/10.17270/J.LOG.2018.259

 e-ISSN 1734-459X

ORIGINAL PAPER

OPTIMIZING THE STRUCTURE OF SOFTWARE SYSTEMS
SUPPORTING LOGISTICS AT THE DESIGN STAGE

Kazimierz Worwa

Military Technical University, Warsaw, Poland

ABSTRACT. Background: Computer software, widely used to support a broad range of logistics activities, is

characterized both by increasing functionality and increasing complexity. For this reason, the process of software

production, including the stages of specification of requirements, design, programming and testing, is time-consuming

and expensive. The main goal of the software design phase is to determine the software architecture that identifies all

software components and defines links and connections between them. The design phase also includes the development

of the so-called internal logic of all extracted components, that is, detailed elaboration of algorithms for their operation

and defining the structure of data used. It should be emphasized that the results of the software design process depend

greatly on the knowledge and experience of the designer, because there are no universal behavioral patterns in this area.

The main goal of the approach proposed at work is to reduce the role of the subjective factor in the results of the

software development process. The focus of this work is on this software development process within logistics processes.

Methods: The basic research method used in the work is mathematical modeling. The paper proposes a formal method of

assigning the modular structure of the computer program by formulating and solving the corresponding double-criterion

optimization problem. The module strength coefficient and module-coupling coefficients were established as

modularization criteria of the program.

Results: The main result of the work is the method of determining the modular structure of the designed program by

determining the solution of the two-criterion optimization problem. The numerical example developed to illustrate this

entirel confirms the possibilities of its practical application. The modular structure of the program, based on the solution

of the formulated polyoptimization task, is characterized by the maximum value of the modular power coefficient and the

minimum value of the modular strength coefficient. According to the latest trends in software engineering, it is the

optimal structure. The method can be useful in the process of designing software for systems supporting the

implementation of logistics processes.

Conclusions: The author's method of determining the modular structure of the program, presented in the article, is an

unprecedented attempt in the literature to use formal methods in the software design process, which could be

implemented practically in the logistics processes. The lack of similar attempts probably results from the very low

compliance of the software design stage with attempts to formalize it. In order to increase the possibility of practical

application of the proposed method, it seems reasonable to conduct further work to implement the methods of developing

software requirements specifications in a formalized form, e.g. with the use of mathematical notation.

Key words: program design, modular structure, modularization criteria, program structure optimization.

INTRODUCTION

Logistics is one of those sectors that could

not function effectively without information

technology (IT) support. The growing

importance of competition in the area of

logistics and the constant emphasis on

increasing the efficiency of enterprises'

operation drives the search for new solutions

and technologies and increases the importance

of using modern IT systems. Computer

software, widely used to support logistics

activities understood in the broad sense, is

characterized by increasing functionality and

also by increasing complexity. For this reason,

the process of producing software is time-

consuming and expensive. The traditional

,

 Worwa K., 2018. Optimizing the structure of the software systems supporting logistics on the stage of its design.

LogForum 14 (2), 209-219. http://dx.doi.org/10.17270/J.LOG.2018.259

210

organization of the software production

process includes 4 main stages of work:

specification of requirements, project

development, implementation and testing.

Practical methods of implementing these

stages, including the techniques and tools used

for design and implementation, as well as

methods of organizing the work of executive

teams, are of interest to software engineering.

Among all the stages of a complex computer

program development process, the design stage

is one of the most important due to the

possibility of shaping usability. According to

the analytical design [Pressman 2015,

Hohmann 2006, Hohmann 2013], the essence

of a program design stage is to design a

modular structure of the program under

construction, defining in particular its

decomposition into component modules and

their interrelations. What has a very important

influence on the form of modular structure of

the program are the criteria assumed for its

division into modules, henceforth referred to as

modularization criteria.

Numerous modularization methods are used

in practice, depending on the specificity and

purpose of the programs being designed.

Designing a program, like any design activity,

is essentially about the invention or creative

activity of the designer. Due to the fact that

both the design work and its results depend

greatly on the designer's knowledge and

experience (the subjective conditioning of the

design process), the software design stage is

hardly susceptible to formalization. It should

be emphasized that the formalization of design

work, such as the extensive use of

mathematical methods for finding specific

design solutions, could be the basis for

undertaking work to reduce the role of the

subjective factor in design work, for example

through their partial automation.

The paper presents an attempt to define the

modular structure of a program by solving

a suitably defined two-criterion optimization

problem, using both maximization of the

modular strength coefficient and minimization

of the inter-module coupling of the program as

the modularization criteria.

THE ROLE OF IT METHODS AND
MEANS IN LOGISTICS

It is well known that modern logistics could

not function effectively without using IT

methods and means. The logistics departments

include cells that deal with storage, transport,

planning and shopping. In these areas of

logistics, IT is indispensable. Proper use of IT

tools is very often a condition for the

implementation of the logistics systems. These

tools are perceived as an essential component

of the logistics systems infrastructure. In the

area of modern logistics, various IT solutions

are used. Some of them are typical solutions,

also used in other industries, others are strictly

specialized, dedicated to the logistics sector.

Among the logistics functions for which IT

resources are commonly used, one can

mention: planning logistics processes in

various cross-sections and time horizons,

coordination of events, operations and logistics

processes, monitoring and control of logistics

operations, and operational control of logistics

processes.

What are particularly important in the

activities of modern enterprises, including

logistics companies, are integrated IT

management systems. Increasingly, operate in

a distributed system, allowing logistics

management of both large and small

enterprises [Bartkowiak, Rutkowski 2016].

The most important ones used in logistics

include: ERP (Enterprise Resource Planning),

WMS (Warehouse Management System),

CRM (Customer Relationship Management),

MRP (Material Requirements Planning) and

SCM (Supply Chain Management) systems.

A broader description of the architecture and

functionality of these systems can be found, for

example, in Rezapour et. al, 2009.

ERP systems provide support for managing

the entire enterprise. The basis for the

implementation of such systems is the

integration of all areas of the company's

operations, through a common database, which

all the cells use (production planning, sales,

transport, distribution, human resources or

accounting). ERP logistics systems can be

adapted to almost any type of activity. Great

convenience is afforded by the possibility of

limiting or extending the access of individual

Worwa K., 2018. Optimizing the structure of the software systems supporting logistics on the stage of its design.

LogForum 14 (2), 209-219. http://dx.doi.org/10.17270/J.LOG.2018.259

211

units to the database. Data obtained and

collected in this way can be repeatedly used

and processed without fear of it being lost.

ERP systems are also recommended for

companies that operate in many places,

branches, countries, because thanks to them the

whole organization operates equally, and the

exchange of data between individual cells

takes place in real time.

WMS systems are an effective tool for

supporting all processes related to storage and

warehouse functioning. Typical business

processes occurring in the warehouse are:

receiving and sending large batches of goods,

their proper segregation, order preparation, and

invoicing. WMS class systems allow for quick

and efficient implementation of these

processes, ensuring minimization of the

likelihood of making a mistake. These systems

allow the use of modern technologies in

warehouse processes, based on automatic

identification technologies, among which those

based on bar codes or RFID technologies are

becoming increasingly popular.

CRM systems are dedicated to managing

customer relations. They enable continuous

collection of data about current and potential

clients. They increase the chances of acquiring

new customers, but also for maintaining

relationships with clients already using the

services of a given company. As part of CRM

information systems, it is also possible to

conduct service and consulting activities, as

well as to collect information on the needs of

customers and their satisfaction with the

services offered. Better contact with the

customer is not only a guarantee of their

loyalty, but is also an additional source of

feedback on the company and can serve to

build its strong position in a competitive

market.

MRP systems are designed to manage the

production process, enabling, among other

things, optimization of production of different

elements and their components, optimization

of inventories, and estimation of production

costs, as well as better use of the enterprise

infrastructure.

The functionality of SCM class systems

includes procurement, production and

distribution, and, to a greater extent, the

integration of the enterprise with suppliers and

recipients. SCM systems often require the

integration of several IT subsystems, which

significantly increases the efficiency of

information flow, facilitating, among other

things, the adjustment of demand and supply to

each other, more efficient customer service,

increased competitiveness through the optimal

flow of materials and lower storage costs, as

well as improved cooperation with suppliers

and recipients.

Areas of logistics create many opportunities

for the introduction of new technological

innovations in the field of information systems.

New, advanced technologies create many

opportunities for improving logistics

management. It is worth paying attention to the

possibilities offered by RFID technology in

this area. A description of an exemplary use of

these possibilities of this technology in

a logistics information system is presented in

the study by Nowicki et. al [2017]. Current

technological progress in the design,

construction and operation of integrated

information management systems is a basic

condition for the development of logistics.

PROGRAM MODULARIZATION
CRITERIA

Designing the modular structure of the

program is based on the specification of

software requirements. For the purposes of

further consideration, it is assumed that these

specifications are expressed by a specially-

designed decision table (the 'cause-effect

table') describing in a precise and

unambiguous way the program input and the

actions that it performs. The method of

constructing such a table is described in

[Myers 2012]. In the papers cited, cause-effect

tables are constructed for the purpose of

designing a set of test cases, which is the basis

for the testing phase. Cause-effect table

describes the relationship between the so-

called causes that are possible combinations of

input data from the program and their effects,

understood as actions taken by the program

following the occurrence of these cases.

,

 Worwa K., 2018. Optimizing the structure of the software systems supporting logistics on the stage of its design.

LogForum 14 (2), 209-219. http://dx.doi.org/10.17270/J.LOG.2018.259

212

Let be the set of numbers - resulting from

the specification of requirements - possible

combinations of causes and - the set of

numbers of their effects.

Let } J ..., j, ..., 2, 1, { =J be the set of

numbers - resulting from the specification of

requirements - possible combinations of causes

and } I ..., i, ..., 2, 1, { =I - the set of numbers of

their effects.

With reference to the previously mentioned

cause-effect table, the value I is the number of

lines of the "effect" part of the table, and J

denotes the number of their columns.

In the remainder part of this article, the

cause-and-effect table describing the

specifications of the analized program will be

represented by the matrix T, as follows:

[]
JIijt = T

× , (1)

where





=
.0

,1

otherwise

causes of ncombinatio th-j the of econsequens a is efect th-i the if
tij

According to previous remarks, the

particular effects represented in the matrix T as

"one" are understood as actions performed by

the program following the occurrence of

specific combinations of causes (input data).

There are a number of mutually related

modules (in the sense of sequence for

example) in the program design process, which

represent the programming implementation of

these actions. The complexity and number of

implemented actions determines the number

and nature of reciprocal links of the specified

modules. Let } M..., m, ..., 2, 1, { =M denote

the set of program module numbers, wherein

the range of values that number M can take is

as follows:

 Im ≤≤1 ,

where M = 1 means no modularization (the

so-called one-module program), while M = I is

the maximum modularization that takes place

when every program module implements

exactly one action (function).

Determining the number of modules M as

well as their interrelationships is a fundamental

difficulty in the process of designing the

modular structure of the program. Using the

matrix T, which is a representation of the

cause-effect table of the designed program, the

problem of determining the modular structure

of the program can be reduced to the problem

of determining the "allocation" of each action

to particular modules, i.e. to determine the

number of modules and actions that they will

execute. The mentioned assignment,

hereinafter referred to as the letter X, is defined

as follows:

[]
MIimx = X × , (2)

where





=
.0

1

otherwise

module, th-m theby realized is action th-i the fi
xim

Elements of the matrix X fulfill the

following constraints:

I
M

∈≥
∈

i x
m

im ,1 , (3)

where equality in dependence (3) takes

place in a situation in which every action

(function) can be executed (implemented) by

exactly one module.

Assignment X assigns the division of the set

of effect numbers I into subsets defined as

follows:

}x iX imm 1:{)(=∈= II .

According to the above definition set

MI ∈m Xm),(, contains the numbers of these

actions, which according to assignment X

implements the m-th module.

In cases where dependencies (3) are

equations sets MI ∈m Xm),(, are disjoint sets.

Worwa K., 2018. Optimizing the structure of the software systems supporting logistics on the stage of its design.

LogForum 14 (2), 209-219. http://dx.doi.org/10.17270/J.LOG.2018.259

213

The nature of the mutually relations

between modules is determined by the

interrelationships of the particular effects - in

the sense of their temporal consequence -

during the execution of the program. Mutual

effect relationships will be characterized by

functions J∈j
j,Γ , defined as follows:

J∈→ j 2I
Ij :Γ (4)

The value of the function for the i-th action

is the set of numbers of those program actions

that for the j-th combination of causes the

program can execute next. For example, if

},{)(lkij =Γ then for the j-th combination of

causes, after execution of the i-th action as the

next one can be executed the k-th or l-th action.

Designing a modular structure of a program

involves determining the number of modules

(by determining their "content", i.e. the actions

(functions) that they will implement) and their

interrelations. This structure - dependent on

assignment X - will be characterized by the

zero-one matrix Γ(X), defined as follows:

[]
MMmn XX ×=)()(γΓ , (5)

where










=

otherwise.

next, as executed be can module th-n the

 module th-m the execution wfterX sassignment to according if

 Xmn

0

1

)(γ

Using the knowledge of function J∈j
j,Γ ,

quantities)(Xmnγ , M∈n m, , can be defined

as follows:







=

≠
= ∈ ∈ ∈

,

,)(
)()()(

nm for0

nm orfX
X j Xh Xi

j

hi

mn m m

Χ Χ Χ
J I I

γ
γ

 (6)

and



 ∈

=
thetwise,o

hi if
 X

j

j

hi
0

)(1
)(

Γγ

where operator Χ means logical

summation of zero-one values, i.e.

∏
∈∈

−−=
)()(

))(1(1)(
Xi

j

hi

Xi

j

hi

mm

XX
II

γγΧ .

As mentioned earlier, modularization

criteria have decisive importance in the process

of designing the modular structure of the

program. In particular, these criteria determine

the form of the matrix X, describing the way of

grouping actions into modules. From practical

experience it follows that the modular structure

of the program - among other things, to ensure

its high reliability, ease of use and possible

modifications - should be characterized by

maximum simplicity. In this work, as a way to

achieve this simplicity, simultaneously

maximization of the modular strength

coefficient and minimization of the inter-

module coupling of the program is proposed. It

should be stressed that this approach is

consistent with the latest trends in modern

software engineering [Pressman 2015,

Hohmann 2006, Hohmann 2013].

The strength of a module is a measure of

the nature and strength of inter-modular

(internal) links between particular parts

(elements) of a module. The inter-module

coupling of the program is a measure of the

number and types of inter-module (external)

links, that is, between the highlighted program

modules. The term "link" that is present in the

above quoted definitions most commonly

means the data coupling in practice [Myers

1975].

There are several types of module strength

and module coupling categories in literature.

For example, Myers [Myers 1975]

distinguishes 7 module strength categories

(random, logical, classic, algorithmic,

communication, information) and 6 categories

of module coupling (content, common,

external, control, features, data).

Let A} ..., a, ..., ,2,1{=A , B} ..., b, ..., ,2,1{=B

denote sets of module strength categories and

module coupling respectively, and these

numbers are assumed to be assigned to each

category in such a way that the higher number

,

 Worwa K., 2018. Optimizing the structure of the software systems supporting logistics on the stage of its design.

LogForum 14 (2), 209-219. http://dx.doi.org/10.17270/J.LOG.2018.259

214

corresponds to a higher strength or coupling

category.

The strength of the individual modules and

the strength of their interconnections depends

on the described by the matrix X, grouping

method of actions realized by the program.

Let A(X) denote the M-element vector, the

components of which determine the strength of

the individual program modules for the

assignment X:

MA ∈∈ m , (X) a), (X) a ..., (X), a ..., (X), a (X), a (= A(X) mMm21

Respectively, let B (X) denote the matrix

characterizing the strength of module coupling

of the considered program for the assignment

X:

[]
MMmn Xb= B(X) ×)(,

where)(Xbmn
 is the number of the m-th and

n-th module coupling categories, for the

assignment X.

The following two coefficients will be used

as criteria for program modularization:

− module strength coefficient of the program:

)(min)(
1

Xa XF m
m M∈

= (7)

− module coupling coefficient of the

program:

)(max)(
),(

2 Xb XF mn
nm MM ×∈

= (8)

The value of the coefficients (7) and (8) in

a particular way characterize the modular

structure of the program, wherein the way of

their construction shows that the module

strength value is equal to the "weakest"

number - among all component modules - the

module strength category, while the module

coupling value in the program is determined by

the category number of the pair of modules

"most strongly" interrelated.

FORMULATING A PROBLEM TO
OPTIMIZE THE ALLOCATION OF

ACTIONS TO INDIVIDUAL
PROGRAM MODULES

Based on the introduced denotations and

the assumed program modularization criteria it

is possible to formulate the following two-

criterion optimization problem of assignment

of actions (functions) to particular modules of

designed program can be formulated:

),,(R F F X (9)

where:

 X – a set of permissible solutions,

defined as follows:

[] } (3) and (2) sconstraint satisfiesX : x = X {
MIim ×=X ; (10)

 F - two-criterion quality coefficient of

the solution quality of the form

), (X) F (X), F (= F(X) 21
 (11)

wherein the component criteria F1, F2 are

defined by the relationships (7) and (8)

respectively;

R - the dominance relation in the set of

values of the quality coefficient, defined as

follows:

} y y ,y y :) y ,(y { = R 2

2

2

1

1

2

1

121 ≤≥×∈ YY (12)

where Y is so called criteria space

[Eschenauer, Koski, Osyczka 1990], defined as

follows:

 } X :) (X) F (X), F (=y { = F(X) = 21 XY ∈ (13)

where in

)y (yy),y (y y 2

2

1

22

2

1

1

11 ,, == .

In the presented formulation of the problem

of determining the optimal assignment, the

dimension of the matrix X is set to MI × . In

cases where the number of modules M cannot

be determined in advance M = I must be pre-

determined. After determining the solution X

of the task (9-13), the real number of modules

Worwa K., 2018. Optimizing the structure of the software systems supporting logistics on the stage of its design.

LogForum 14 (2), 209-219. http://dx.doi.org/10.17270/J.LOG.2018.259

215

of the program under consideration is obtained

by summing these columns of the matrix X in

which there is at least one "1".

According to previous remarks, the

knowledge of the assignment X allows to

define the modular structure of the designed

program, while the assignment X , which is

the solution of the two-criterion optimization

problem (9-13), corresponds to the optimal

modular structure in the sense of the assumed

criteria. The solution of the optimization

problem (9-13) can be determined in

accordance with accepted methodology of

solving multi-criterion optimization tasks

[Eschenauer, Koski, Osyczka 1990].

NUMERICAL EXAMPLE

For the illustration of the considerations

that have been discussed, a simple numerical

example will be presented.

Let the sets I, J, the matrix T and the

functions J∈j j ,Γ , describing the

specifications of the sample requirements of

the designed program have the following form:

}4,3,2,1{ =I ,

}10,9,8,7,6,5,4,3,2,1{ =J ,



















=

0010110011

0101010010

1100100100

1100011001

T
,

 }4{)3()1(21 ==ΓΓ ,

 }4{)3(},4,3{)1(55 == ΓΓ ,

 }4{)2(6 =Γ ,

 }3,1{)2(9 =Γ ,

 }1{)2(10 =Γ ,

wherein in description of the function

J∈j
j,Γ , the cases in which their values are

empty are omitted.

According to the accepted assumptions, the

set of permissible solutions (assignments) X,

defined by the relation (10), has the following

form:

}X X X X X 54321 ,,,,{=X ,

where:



















=

1

1

1

1

1X
,



















=

10

01

01

01

2X
,



















=

10

10

01

01

3X
,



















=

100

010

001

001

4X
,



















=

1000

0100

0010

0001

5X
.

Above permissible assignments correspond

to the following five cases:

1. all four program actions are implemented

by one module (X1);

2. one module executes three actions and the

other one (X2);

3. each of two modules executes two actions

(X3);

4. one module executes two actions, the

other two - one action (X4);

5. each module executes exactly one action

(X5).

Corresponding to the particular permissible

assignments matrices 5,1),(i Xi =Γ , describing

the possible modular structures of the analyzed

program are defined as follows:

[] }4,3,2,1{,0)(1)(X 1, MX 11 === IΓ ;

}2,1{},3,2,1{,
00

10
)()(32)(X)(X 2, MXX 3121 ===







== IIΓΓ

,

 Worwa K., 2018. Optimizing the structure of the software systems supporting logistics on the stage of its design.

LogForum 14 (2), 209-219. http://dx.doi.org/10.17270/J.LOG.2018.259

216

}4{},3{},2,1{,

000

100

110

)(4 ====
















=)(X)(X)(X 3, MX 434241 IIIΓ

 {4}.)(X {3},)(X)(X)(X 4, M

 X

34333251 =====



















=

IIII },2{},1{

,

0000

1000

1101

1100

)(5Γ

Existing in analyzed sample program

internal and external modular links will be

evaluated based on the categories proposed by

Myers [Myers 1975]), mentioned in chapter 2

i.e. 7} 6, 5, 4, 3, 2, 1,{=A , 6} 5, 4, 3, 2, 1,{=B .

Let matrices 5 1,i XB XA ii =),(),(, will be

defined as follows:

[] []0)(,1)(11 == XB XA ;

[] 







==

04

40
)(,21)(22 XB XA ;

[] 







==

03

30
)(,33)(33 XB XA ;

[]
















==
042

403

230

)(,223)(44 XB XA
;

[]


















==

0412

4032

1305

2250

)(,2253)(55 XB XA
.

The values of the coefficients, assumed as

component criteria for modularization,

according to (7) - (8), have the form:

 XF XF XF XF XF 2)(,2)(,3)(,1)(,1)(5141312111 =====
 XF XF XF XF XF 5)(,4)(,3)(,4)(,0)(5242322212 =====

Accordingly, the criterion space Y, defined

by the relation (13), forms the following set of

pairs

5 1,i),)(X F),(X F (= F(X) i2i1 =

)}5,2(),4,2(),3,3(),4,1(),0,1{(=Y .

According to the assumed dominance

relation (12) there are two non-dominated

[Eschenauer, Koski, Osyczka 1990] elements

in the set Y, as pairs (1, 0) and (3, 3). These

elements are "better" - in the sense of the

relation R - from the other elements of the set

Y. These pairs of points are images - in the

transformation F – of permissible solutions

(assignments) X1 and X3 respectively. These

solutions are therefore non-dominated

solutions of the two-criteria optimization

problem (9) - (13).

Solution X1 corresponds to such situation in

which all actions are implemented by only one

module. In this case strength module

coefficient is low, but there are no external

links between modules. In turn, the solution X3

corresponds to the case of a program in which

two modules exist. In this situation value of the

strength module coefficient is increased, but

due to the appearance of certain links between

modules, the value of the module coupling

coefficient in the program it is getting worse.

Statement that solutions X1 and X3 are non-

dominated solutions of the two-criteria

optimization problem (9) - (13) means that,

based on the assumed dominance relationship

(12), it cannot be decided which one of them is

a better solution. In general, for example for

purely practical reasons, aimed at e.g. to

reduce the complexity of the design-

implementation task and improve the utility of

the program, the designer decides probably to

take the solution X3.

CONCLUSIONS

The formalized method of designing the

structure of application software presented

here can be useful in the processes of

designing a wide range of information systems,

including designing software supporting the

planning and implementation of logistics

processes. The proposed method of

determining the modular structure of the

computer program by solving the two-criteria

Worwa K., 2018. Optimizing the structure of the software systems supporting logistics on the stage of its design.

LogForum 14 (2), 209-219. http://dx.doi.org/10.17270/J.LOG.2018.259

217

optimization problem (9)-(13) requires

representation of program requirements

specifications in the form of matrix (1) and (4).

It should be emphasized that, besides the

possibility of applying the method described,

this form of describing program requirements

specifications also enables effective

verification of their completeness and

consistency, and the application of modern test

data design methods, e.g. cause-effect graph

methods [Myers 2012].

The modular structure of the program,

based on the solution of the formulated task of

polyoptimization, is characterized by the

maximum value of the module strength

coefficient (7) and the minimum value of the

module coupling (8). According to the latest

software engineering trends, this is the optimal

structure.

The practical application of the proposed

method requires the determination of the

solution to the two-criteria optimization

problem (9) - (13), i.e. determining the

dominant solution set, and in the absence of it,

which is very often the case, the non-

dominated solutions set [Eschenauer, Koski,

Osyczka 1990]. If this set contains more than

one element, its "representative" must be

chosen as part of the design decisions, e.g. by

designating a compromise solution

[Eschenauer, Koski, Osyczka 1990].

Consequently, the efficiency of the proposed

method can be significantly increased by

equipping the designer with the appropriate

software to enable computer-aided determining

of the solution to the two-criteria optimization

problem (9) - (13).

In many practical situations, the set of

permissible solutions X of optimization

problem (9) - (13) will not be too numerous,

i.e. the number of design variants will be

relatively small. In such cases, the solution to

this problem can be determined by the full

review method.

REFERENCES

Adamczak M., Domanski R., Hadas L. et al.,

2016. The integration between production-

logistics system and its task environment

chosen aspects. Conference: 8th IFAC

Conference on Manufacturing Modelling,

Management and Control (MIM), IFAC

Papersonline, 49, 12, 656-661.

Ansaria S., Başderea M., Lib X., Ouyangc Y.,

Smilowitza K., 2018. Advancements in

continuous approximation models for

logistics and transportation systems: 1996–

2016. Transportation Research Part B:

Methodological. 107, 229-252.

 http://dx.doi.org/10.1016/j.trb.2017.09.019

Cyplik P., Hadas L., Adamczak M. et al.. 2014.

Measuring the level of integration in

a sustainable supply chain. 19th World

Congress of the International-Federation-

of-Automatic-Control (IFAC), Cape Town,

IFAC Papersonline, 47, 3, 4465-4470.

Eschenauer H., Koski J., Osyczka A., 1990,

Multicriteria design optimization:

procedures and applications. Springer-

Verlag, Berlin.

Felix T.S. Chan, Nan Li, Chung S.H., Saadat

m., 2017. Management of sustainable

manufacturing systems-a review on

mathematical problems. International

Journal of Production Research, 55, 4,

http://dx.doi.org/10.1080/00207543.2016.1

229067

Fernandes A.C., Sampaio P., Sameiro M.,

Truong H.Q., 2017. Supply chain

management and quality management

integration: A conceptual model proposal.

International Journal of Quality &

Reliability Management, 34, 1, 53-67.

http://dx.doi.org/10.1108/IJQRM-03-2015-

0041

Hohmann L., 2006, Beyond Software

Architecture: Creating and Sustaining

Winning Solutions. Addison Wesley.

Hou H., Chaudhry S., Chen Y. et al., 2017.

Physical distribution, logistics, supply chain

management, and the material flow theory:

a historical perspective. Information

Technology and Management, 18, 2, 107-

117.

,

 Worwa K., 2018. Optimizing the structure of the software systems supporting logistics on the stage of its design.

LogForum 14 (2), 209-219. http://dx.doi.org/10.17270/J.LOG.2018.259

218

http://dx.doi.org/10.1007/s10799-015-0229-

1

Myers J.G., 1975, Reliable Software Through

Composite Design. New York:

Petrocelli/Charter.

Myers J.G., 2012, The art of software testing.

Wiley, New York.

Pressman R.S., 2015, Software engineering:

a practical approach, Mc Grow-Hill, New

York.

Rezapour S., Moghadam M.S., Dehkordi

M.A., 2009, Logistics and Supply Chain

Management Information Systems.

Springer-Verlag Berlin Heidelberg.

Vaughn V., 2013, Implementing Domain-

Driven Design, Addison Wesley.

Zavadskasa E.K., Turskisa Z., Vilutienėa T.,

Lepkovab N., 2017. Integrated group fuzzy

multi-criteria model: Case of facilities

management strategy selection, 82, 317-

331. Expert Systems with Applications.

http://dx.doi.org/10.1016/j.eswa.2017.03.07

2

OPTYMALIZACJA STRUKTURY OPROGRAMOWANIA WSPIERA-
JĄCEGO LOGISTYKĘ NA ETAPIE JEGO PROJEKTOWANIA

STRESZCZENIE. Wstęp: Oprogramowanie systemów komputerowych, powszechnie wykorzystywanych do

wspomagania szeroko rozumianej działalności logistycznej, charakteryzuje się coraz większą funkcjonalnością, ale także

coraz większą złożonością. Z tego powodu proces jego wytwarzania, obejmujący etapy: specyfikacji wymagań,

projektowania, programowania oraz testowania, jest przedsięwzięciem czasochłonnym i kosztownym. Głównym celem

fazy projektowania oprogramowania jest określenie architektury oprogramowania, która identyfikuje wszystkie

komponenty oprogramowania i definiuje łącza i połączenia między nimi. Faza projektowania obejmuje również

opracowanie wewnętrznej logiki wszystkich wyodrębnionych komponentów, czyli szczegółowe opracowanie

algorytmów ich działania i określenie struktury wykorzystywanych danych. Należy podkreślić, że wyniki projektowania

oprogramowania silnie zależą od wiedzy i doświadczenia projektanta, ponieważ nie ma uniwersalnych wzorców

zachowań w tym obszarze. Głównym celem proponowanego podejścia jest ograniczenie wpływu wspomnianego

czynnika subiektywnego na wyniki procesu projektowania oprogramowania.

Metody: Podstawową metodą badawczą zastosowaną w pracy jest modelowanie matematyczne. W pracy proponuje się

formalną metodę określania struktury modułowej projektowanego programu, poprzez wyznaczenie rozwiązania

odpowiednio sformułowanego zadania optymalizacji dwukryterialnej. Jako kryteria modularyzacji przyjęto wskaźnik

mocy modułowej oraz wskaźnik siły powiązań międzymodułowych programu.

Rezultaty: Głównym rezultatem pracy jest autorska metoda wyznaczania struktury modułowej projektowanego

programu, poprzez wyznaczenie rozwiązania formalnego problemu optymalizacji dwukryterialnej. Ilustrujący

proponowaną metodę przykład numeryczny w pełni potwierdza możliwości jej praktycznego zastosowania. Struktura

modułowa programu, oparta na rozwiązaniu sformułowanego zadania polioptymalizacji charakteryzuje się maksymalną

wartością współczynnika tzw. mocy programu i minimalną wartością modułowego współczynnika powiązań

międzymodułowych. Zgodnie z najnowszymi trendami inżynierii oprogramowania, jest to zatem struktura optymalna.

Metoda może być przydatna, m.in. w procesie projektowania oprogramowania systemów wspierających realizację

procesów logistycznych.

Wnioski: Przedstawiona w artykule autorska metoda określania struktury modułowej programu jest – nie mająca

precedensu w literaturze przedmiotu – jest próbą wykorzystania metod modelowania matematycznego w procesie

projektowania oprogramowania. Brak podobnych prób w literaturze przedmiotu prawdopodobnie wynika z bardzo niskiej

podatności etapu projektowania oprogramowania na jego formalizacji. W celu zwiększenia możliwości praktycznego

stosowania proponowanej metody wydaje się zasadne prowadzenie dalszych prac, służących wdrożeniu metod

opracowywania specyfikacji wymagań na oprogramowanie w sformalizowanej formie, np. z wykorzystaniem zapisu

matematycznego.

Słowa kluczowe: projektowanie programu, struktura modułowa, kryteria modularyzacji, optymalizacja struktury

programu.

Worwa K., 2018. Optimizing the structure of the software systems supporting logistics on the stage of its design.

LogForum 14 (2), 209-219. http://dx.doi.org/10.17270/J.LOG.2018.259

219

OPTIMIERUNG DER DIE LOGISTIK UNTERSTÜTZENDEN
SOFTWARE-STRUKTUR IN DER PHASE DEREN PROJEKTIERUNG

ZUSAMMENFASSUNG. Einleitung: Die Software von Computersystemen, die im allgemeinen zur Unterstützung der

breit verstandenen, logistischen Aktivitäten in Anspruch genommen werden, charakterisiert sich nicht nur durch die

immer größere Funktionalität, sondern auch durch die immer höhere Kompliziertheit. Daher ist der Prozess deren

Erzeugung, die folgende Etappen wie: Auflistung von Anforderungen, Projektierung, Software-Erstellung und Testen

umfasst, ein zeit- und kostenaufwendiges Vorhaben. Das Hauptziel der Phase von Projektierung der Software ist es, die

Software-Architektur, die alle Software-Komponenten bestimmt und die Schnittstellen zwischen ihnen definiert,

festzulegen. Die Projektierungsphase umfasst auch die Ermittlung der zwischen den betreffenden Komponenten

bestehenden Logik, das heißt die Bearbeitung von Algorithmen deren Funktionalitäten und die Bestimmung der Struktur

von in Anspruch genommenen Daten. Da in diesem Bereich keine Handlungsmuster vorliegen, muss es hervorgehoben

werden, dass die Ergebnisse der Software-Projektierung jeweils stark vom Wissen und der Erfahrung des Projektanten

abhängen. Das Hauptziel der vorgeschlagenen Vorgehensweise ist die Einschränkung des Einflusses des erwähnten,

subjektiven Faktors auf die Resultate des Software-Projektierungsprozesses.

Methoden: Die grundlegende, im Rahmen der vorliegenden Arbeit in Anspruch genommene Forschungsmethode ist die

mathematische Modellierung. Dabei schlägt man eine formelle Methode für die Bestimmung der Modul-Struktur des

projektierten Programms anhand der Festlegung einer dementsprechend formulierten Aufgabe der Zweikriterien-

Optimierung vor. Als Modularisierungskriterien wurde die Kennziffer einer Modul-Power und die Kennziffer der Stärke

von intermodularen Bindungen innerhalb des Programms angenommen.

Ergebnisse: Die Autoren-Methode der Kennzeichnung der Modul-Struktur eines projektierten Programms anhand der

Festlegung einer dementsprechend formulierten Aufgabe der Zweikriterien-Optimierung stellt das Hauptresultat der

Forschungsstudie dar. Das nummerische Beispiel, das die vorgeschlagene Methode projiziert, bestätigt in vollem

Umfange die Möglichkeiten deren praktischen Anwendung. Die Modul-Struktur des Programms, die sich auf die Lösung

der Aufgabe einer Polyoptimierung stützt, charakterisiert sich durch den maximalen Wert des Koeffizienten der sog.

Programm-Power und den minimalen Wert des modularen Koeffizienten der intermodularen Bindungen. Laut der

neuesten Trends innerhalb des Software-Ingenieurwesens gilt die betreffende Struktur als eine optimale Struktur. Die

Methode kann unter anderem im Prozess der Projektierung von Software-Systemen, die die Ausführung von

Logistikprozessen unterstützen, brauchbar sein.

Fazit: Die im Artikel projizierte, in der Gegenstandsliteratur einzigartige Autoren-Methode für die Bestimmung der

Modul-Struktur des Programms stellt einen Versuch der Inanspruchnahme von Methoden zur mathematischen

Modellierung im Prozess der Software-Projektierung dar. Der Mangel an ähnlichen Versuchen in der betreffenden

Fachliteratur resultiert wahrscheinlich aus der sehr niedrigen Brauchbarkeit der Projektierungsphase in Bezug auf deren

Formalisierung. Zwecks der Erhöhung von Möglichkeiten einer praktischen Anwendung für die vorgeschlagene Methode

scheint die Fortsetzung weiterer Forschungsarbeiten, die der Einführung von Methoden zur Ermittlung von Software-

Anforderungen in einer formalisierten Form, z.B. unter Anwendung einer mathematischen Aufzeichnung, dienen,

durchaus zweckmäßig zu sein.

Codewörter: Projektierung des Programms, Modul-Struktur, Kriterien der Modularisierung, Optimierung der Software-

Struktur.

Kazimierz Worwa

Military Technical University

Faculty of Cybernetics

gen. Witolda Urbanowicza 2, 00-908 Warszawa 46, Poland
e-mail: kazimierz.worwa@wat.edu.pl

Funding Source Declaration

Faculty of Cybernetics statutory fund

