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ABSTRACT. Background: Global supply chains are confronted with the challenge of ensuring on-time deliveries while 

simultaneously enhancing supply chain resilience. Conventional methods aim to address the complexities of modern supply 

chains, promoting the transition to intelligent and data-driven strategies. 

Methods:  This research represents an innovative methodology for predicting the risk of late deliveries in supply chains. The 

presented framework combines clustering and multiclassification techniques, where the clustering phase is executed through 

hyperparameter optimization and a novel metaheuristic called RIME. In the multiclassification phase, five distinct deep learning 

models are employed, namely, Generative Adversarial Network (GAN), Convolutional Neural Network Long Short-Term 

Memory (CNN-LSTM), within Ensemble learning via bagging, Ensemble learning stacking, and Ensemble learning within 

boosting. The three ensemble learning models are based in GAN and CNN-LSTM. 

Result: This paper presents a systematic evaluation of diverse models in a risk of late delivery prediction framework. This 

evaluation demonstrates that Ensemble learning stacking provides the higher accuracy by 0.926, showcasing its prowess in 

precise predictions. Notably, Ensemble learning bagging and Ensemble learning boosting exhibit strong precision. Regression 

metrics reveal Ensemble learning stacking and Ensemble learning bagging's superior error minimization (MSE 0.11, MAE 

0.09). This metric demonstrates that the proposed model can predict the risk level of late delivery in a supply chain with high 

precision. 

Conclusion: This paper introduces an innovative clustering and multiclassification-based framework for predicting the risk of 

late deliveries. The ability of prediction late deliveries risk helps organizations to enhance supply chain resilience by adopting 

a proactive management risks strategy, optimizing operational processes, and elevating customer satisfaction. 

 

Keywords: Artificial Neural Networks (ANNs), Late Delivery Risk, Supply Chain Management, Clustering, 

Multiclassification, Deep Learning Models, RIME Optimization Algorithm.  
 

INTRODUCTION  

In the midst of the global supply chain, 

companies face the challenge of not only 

expanding their production worldwide but also 

meeting the rising expectations of customers for 

quick and on-time delivery (Fri et al., 2021; 

Douaioui et al., 2021). Balancing this act requires 

smart strategies in streamlining processes within 

the dynamic world of supply chain management 

(Fri et al., 2019). A crucial challenge in this 

dynamic environment is the risk of late deliveries, 

significantly impacting the success of supply chain 

management across industries (Douaioui et al., 

2021). Accurately predicting delivery times is now 

more important than ever, bringing about a need to 

minimize delays and handle these risks proactively 

(Ngniatedema et al., 2016). The approach taken to 

address the precision of late delivery risks directly 
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impacts the efficiency of the supply chain, 

prompting a shift from conventional methods to 

more innovative ones (Menchaca-Méndez et al., 

2022). 

The approach used in this work for handling 

these risks has evolved over time. Early strategies 

used statistical methods like analysis of variance 

(ANOVA) to build systems targeting global late 

delivery times, especially in fast-paced 

environments (Patel et al., 2023; Mahmud, 2023). 

The last ten years have seen a big change, thanks 

to the widespread use of artificial intelligence (AI), 

bringing in a new era of effective risk management 

(Aziz and Dowling, 2019). 

AI is at the heart of this transformation, 

serving as a crucial tool for proactive risk 

management in supply chains. AI allows us to look 

at risks comprehensively, identify patterns, and 

make informed decisions to handle potential 

disruptions (Helo and Hao, 2022). Beyond just 

managing risks, AI improves the reliability of 

supply chains by giving us real-time data insights, 

making decision-making more effective and 

operations more efficient. Additionally, AI 

encourages collaboration and information 

exchange, improving communication and 

coordination among different players in the supply 

chain (Helo and Hao, 2022) .  

With the same goal of predicting risk in the 

supply chain, but using AI, (Sarbas et al., 2023) 

historical supply chain data from a publicly 

available data repository was utilized to train 

machine learning algorithms. The considered 

models are logistic regression algorithm, random 

forest classifier algorithm, and Gaussian Naïve 

Bayes algorithm. Subsequently, the trained models 

underwent validation through k-fold cross-

validation. The paper includes a comparative 

analysis using performance metrics on the test data 

such as receiver operator characteristics (ROC), 

precision, recall, and F1-score to identify the most 

effective predictive model for the delivery risk 

prediction problem. Generally, the random forest 

model shows the highest performance across 

multiple metrics. With the focus on the 

eCommerce sector, Lolla et al. (2023) tried to 

forecast late delivery risks through the examination 

of historical data employing machine learning 

methodologies. They evaluated various 

algorithms, namely Logistic Regression, 

XGBoost, Light GBM, and Random Forest and 

suggest that the hybrid approach that merges all of 

these models surpasses other ensemble and 

individual algorithms in terms of accuracy, 

specificity, precision, and F1-score. The objective 

of a paper written by Zaghdoudi et al. (2022) is to 

address the high number of supplier delays faced 

by an industrial furniture manufacturing company 

due to the Covid-19 pandemic. The evaluation 

involves testing three machine learning models: 

logistic regression, random forest, and Gaussian 

Naïve Bayes. The Random Forest model emerges 

as the most effective in avoiding false delivery 

advance alerts. Overfitting is addressed through a 

variable selection study for the "decision tree" 

model. 

In another study, Zheng et al. (2023) 

proposed an approach based on federated learning 

for collective risk prediction in supply chains. They 

tried to address the challenge of inadequate 

datasets and privacy concerns by enabling 

organizations to tap into collective knowledge 

without exposing their data. The study focuses on 

buyers predicting order delays from shared 

suppliers before and after Covid-19, demonstrating 

the effectiveness of federated learning, particularly 

for buyers with limited datasets, while highlighting 

the impact of training data-imbalance, disruptions, 

and algorithm choice. The compared models were 

LogReg, ANN, MLP, and CNN1D, with the last 

one being the outperforming model in the scheme 

of federated learning.  

Another study deals with the specific case of 

imbalanced class problems in predictive models, 

where the occurrence of delivery risks is 

infrequent, compared to non-risk orders (Thomas 

and Panicker, 2023). The study compared four 

models, namely K-Nearest Neighbour, Random 

Forest, Logistic Regression, and Support Vector 

Machine, with three oversampling methods: 

random oversampling, Synthetic Minority Over-

sampling Technique (SMOTE), and SMOTE 

http://doi.org/10.17270/J.LOG.001007


Douaioui K., Oucheikh R., Mabrouki C., 2024. Enhancing Supply Chain Resilience: RIME-Clustering and Ensemble 

Deep Learning Strategies for Late Delivery Risk Prediction. LogForum 20 (1), 55-70, 

http://doi.org/10.17270/J.LOG.001007 

57 

Tomek. The results reveal that the Random Forest 

model, combined with SMOTE and Tomek link, 

achieves superior performance. 

This paper proposes using deep learning 

approaches to specifically deal with the challenges 

of predicting and managing the risk of late delivery 

in supply chains. By using historical deliveries data 

from manufacturing execution systems, this paper 

aims to enhance supply chain resilience by offering 

helpful advice for managers in different supply 

chains phases, contributing to the ongoing 

improvement of risk management strategies. By 

achieving a high level of accuracy in risk 

prediction, we empower decision-makers and 

stakeholders within the chain to proactively 

address potential challenges and make informed 

decisions, thereby enhancing the overall efficiency 

and resilience of the system. So, the scientific 

purpose of the presented study is to pioneer 

innovative methodologies for the accurate 

prediction and management of late delivery risks 

within global supply chains. This research 

establishes a dynamic predictive modeling 

framework integrating clustering techniques and 

advanced classification models, specifically the 

Generative Neural Network and a hybrid 

architecture combining CNN with LSTM. The 

strategic integration of these models through 

ensemble learning techniques—bagging, boosting, 

and stacking—aims to synergize their unique 

capabilities, creating a comprehensive 

classification framework. The study not only 

focuses on the theoretical development of these 

methodologies but also provides a meticulous 

exploration of their practical implementation and 

evaluation. 

This paper is organized as follows: Section 2 

outlines a methodology tailored for handling late 

delivery risk in the supply chain, demonstrating its 

advantages. In Section 3, the results of the real-

world applicability of these methods are explored 

through experimentation on actual data. Section 4 

provides meticulous details on the experimental 

setup and comprehensive comparative results, 

emphasizing the relevance of the proposed method 

to procurement challenges. Finally, the paper 

concludes with remarks and outlines potential 

perspectives for future research, particularly in the 

context of applying deep learning techniques to 

overcome late delivery risks in the supply chain. 

MATERIALS AND METHODS 

The study tackles research problems in late 

delivery risk prediction by developing an 

innovative methodology integrating clustering and 

advanced classification models. It explores the 

practical use of ensemble learning strategies to 

enhance predictive performance, mitigate 

overfitting, and achieve generalizability, thus 

addressing the complexity of late delivery risks in 

global supply chains. Technically, the research 

problems include refining the precision of 

classification methods, evaluating the real-world 

applicability of the proposed framework, and 

demonstrating the impact of ensemble learning on 

effective risk mitigation strategies within the 

intricate network of the supply chain.  

To achieve these goals, this section offers an 

extensive overview of the methodology used in this 

study. Figure 1 shows the framework for predicting 

the risk level of late delivery, the framework 

integrates the unique platform clustering technics 

in order to classify the order regions and 

classification methodologies according to four 

level of risks. This integration offers a dynamic 

approach to predictive modeling, enabling not only 

the identification of data clusters but also the 

accurate prediction of late delivery. 

Data description: 

The dataset utilized in this study, known as 

the "Smart Supply Chain for Big Data Analysis" 

dataset, was provided by DataCo Global in 2019 

(Constante, 2019). This dataset was intentionally 

designed to support the application of Machine 

Learning Algorithms and analysis. It covers 

various supply chain activities, including 

provisioning, production, sales, and commercial 

distribution. What sets this dataset apart is its 

ability to seamlessly incorporate both structured 

and unstructured data, enabling the correlation of 
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different data types and the generation of valuable 

insights. 

Moreover, this dataset includes a wide range 

of product categories, such as Clothing, Sports 

equipment, and Electronic Supplies. This diversity 

offers researchers and analysts the opportunity to 

explore insights from different dimensions of the 

supply chain. On closer examination, this work 

identified a total of 49 features within the dataset, 

encompassing information related to orders, 

shipping, and comprehensive sales data. It is a 

combination of textual and numerical data, 

including order locations and quantitative sales 

information, with 24 character columns and 28 

numeric columns, making it a comprehensive 

dataset suitable for in-depth analysis. 

 

Fig. 1 : The framework used to predict the risk level of late deliveries 

Data Processing: 

Data pre-processing is an indispensable task 

in preparing raw data to ensure its suitability for the 

deep learning model proposed in this research 

(Perez et al., 2021) (Perez and Wang, 2017). 

Through a systematic and rigorous execution of the 

data preprocessing step, the dataset's full potential 

is unleashed. Consequently, the Min-Max scaling 

technique is employed to standardize the numeric 

attributes. By systematically and rigorously 

executing the step of data preprocessing, the full 

potential of the dataset used is unlocked. By 

undergoing this transformation, Min-Max 

normalization guarantees that all data points are 

proportionally adjusted to fit within the specified 

range (Moon et al., 2014). As a result, comparisons 

and analyses become more meaningful when 

dealing with data that originally exhibited varying 

scales and units. By implementing the Min-Max 

normalization method, data harmonization is 

achieved, enabling the proposed machine learning 

model to operate efficiently. This, in turn, enhances 

its predictive accuracy and analytical efficiency. 

Min-Max normalization is carried out using the 

following formula (Henderi, 2021)(Eq 1): 

xscaled =
x−xmin

xmax−xmin
                                                (1) 
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Here's a breakdown of the variables: 

𝑥scaled  represents the newly scaled or normalized 

value. 

𝑥 denotes the original data point. 

𝑥min stands for the minimum value observed in the 

dataset. 

𝑥max corresponds to the maximum value present in 

the dataset. 

Feature Selection: 

Feature selection is not crucial in enhancing 

the performance and reducing the computational 

complexity of deep learning algorithms. The main 

goal of feature selection is to reduce the 

dimensionality of the data, thereby enhancing the 

efficiency of the model. In this particular approach, 

the K-best method is utilized as a simple yet 

effective technique for feature selection  (Geng et 

al., 2007). This method involves the organized 

assessment of scores to each characteristic, and the 

selection of the top k characteristics based on these 

scores (Sánchez-Maroño et al., 2007). The scoring 

process consists of a variety of statistical tests, such 

as chi-squared for categorical features, F-scores for 

regression, and mutual information scores for both 

classification and regression. Typically, in this 

investigation, a carefully curated set of the top 12 

features is employed. This selection not only 

diminishes the dimensionality of the data, but also 

preserves crucial attributes, thereby facilitating a 

more efficient and insightful analysis. 

Feature Clustering:   

The customer's location significantly 

influences delivery time, impacted by factors like 

supplier proximity, local infrastructure, seasonal 

aspects, and shipment mode. Employing clustering 

techniques on the 'Order Region' feature helps 

group data, revealing hidden patterns. Categorizing 

products based on 'Order Region' segments allows 

an insight into patterns affecting delivery times. 

This detailed classification facilitates targeted 

analysis of potential delays within specific regions 

or categories, enabling proactive measures to 

mitigate late delivery risks. Clustering within the 

'Order Region' enhances the ability to discern 

subtle factors impacting delivery timelines, 

contributing to a more accurate risk prediction 

strategy in supply chain management. 

Selecting the right number of clusters is vital, 

leading to a hyperparameter tuning step to identify 

the optimal number. Three algorithms—Gaussian 

KDE, Tophat KDE, and Epanechnikov KDE—are 

used for this purpose. 

Gaussian Kernel Density Estimation ( 

Gaussian KDE) (Węglarczyk, 2018) is the  first 

technique that is employed for clustering processus 

in this work. It is a technique used in nonparametric 

kernel density estimation to estimate probability 

density functions. It is widely applicable in various 

fields such as real-life settings, scientific 

computing, graph algorithms, machine learning, 

and statistics.  In this work the Gaussian Kernel 

Density Estimation method is used in clustering 

processes using the Gaussian kernel function 𝑓(𝑥) 

to estimate the probability density function, 

represented as (Eq1). This approach involves 

assessing changes in center point scores and 

minimum distances, establishing a scoring 

mechanism for identifying peaks that indicate 

potential cluster centers. The mathematical 

representation of the scoring mechanism (Eq2) 

facilitates the determination of optimal cluster 

numbers. This data-driven method combines 

density estimation and distance metrics to inform 

the configuration of clusters in subsequent 

clustering algorithms (Niu et al., 2022). 

1

𝑛√2𝜋𝜎
∑𝑖=1

𝑛   exp (−
(𝑥−𝑥𝑖)2

2𝜎2 )                                    (2) 

Score (𝑘) = Change in Center Point Score +
 Change in Minimum Distance, 

Here, 

𝑓(𝑥) is the estimated probability density function 

at point 𝑥, 

𝑛 is the number of data points, 

𝑥𝑖 represents individual data points, 

𝜎 is the bandwidth parameter, determining the 

width of the Gaussian kernel. 
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The Tophat Kernel Density Estimation 

(Tophat KDE; Węglarczyk, 2018) is the  second 

technique that is employed for clustering process 

in this work. This technique involves estimating 

the probability density function of a dataset using a 

Tophat kernel function. In contrast to the standard 

Gaussian kernel, the Tophat kernel assigns equal 

weight to all data points within a specified range, 

making it less sensitive to outliers (Niu et al., 

2022). The Tophat KDE equation is given by 

(Eq3): 

𝑓(𝑥) =
1

𝑛⋅ℎ
∑  𝑛

𝑖=1 𝐾 (
𝑥−𝑥𝑖

ℎ
)                                   (3) 

Where 

𝑓(𝑥) is the estimated density at point 𝑥, 𝑛 is the 

number of data points, 

𝑥𝑖 represents individual data points, ℎ is the 

bandwidth parameter, and 

𝐾 is the Tophat kernel function.  

The Tophat KDE provides a robust approach 

for density estimation in clustering scenarios. It is 

used, particularly in this work, to deal with datasets 

containing outliers or irregularities. 

The Epanechnikov Kernel Density 

Estimation (Epanechnikov KDE; Węglarczyk, 

2018) is the third technique that is employed for 

clustering process in this work. This technique 

utilizes the Epanechnikov kernel function, a 

symmetric, bell-shaped kernel known for its 

robustness and sensitivity to local features (Niu et 

al., 2022). The Epanechnikov KDE equation is 

defined as (Eq 4): 

𝑓(𝑥) =
3

4ℎ
(1 − (

𝑥−𝑥𝑖

ℎ
)

2
)                                       (4) 

In this equation, 

𝑓(𝑥) represents the estimated density at point 𝑥, ℎ 

is the bandwidth parameter, 

and 𝑥𝑖 denotes individual data points.  

The distinctive feature of the Epanechnikov 

kernel is its ability to assign zero weight to data 

points outside a specified range, making it 

particularly robust and less sensitive to outliers. 

This characteristic makes Epanechnikov KDE 

well-suited for the clustering process in this work, 

where outlier resilience is crucial for accurate 

density estimation and cluster identification. 

A Graphical Exploration of Optimal Number of 

Clusters 

Determining the most advantageous value of 

'k' is of the utmost importance in order to attain 

effective and efficient outcomes in the subsequent 

stage of predicting late delivery. Therefore, the 

graphical analysis of the Kernel Density 

Estimation methods proposes the four clusters, as 

depicted in Figure 2.  

 
Fig. 2 :A graphical exploration of optimal number of clusters. 
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Clustering using RIME Optimization Algorithm 

The clustering phase in this study employs 

the Rime Optimization Algorithm (Su et al., 

2023), inspired by the intricate growth patterns 

of natural rime-ice. This algorithm integrates 

unique exploration, exploitation, and selection 

strategies, mimicking the formation of rime-ice 

influenced by temperature and environmental 

factors (Su et al., 2023). 

Drawing from the subtle movement of soft-

rime particles, a step-by-step exploration and 

exploitation technique is devised, establishing a 

soft-rime search strategy as the core method for 

optimization (Su et al., 2023). Inspired by the 

interaction of hard-rime agents, a puncture 

mechanism for hard-rime is proposed, fostering 

dimensional crossover interchange between 

ordinary and optimal agents to enhance solution 

precision (Su et al., 2023). 

Building on the concept of greedy selection, 

an improved positive greedy selection approach 

is introduced to augment population diversity 

and minimize the risk of the algorithm getting 

trapped in local optima. This modification 

involves adjusting the selection of optimal 

solutions. The overall algorithm structure is 

elucidated in Algorithm 1, presenting the 

pseudo-code and flow chart for clarity and 

implementation coherence (Su et al., 2023).

 

Algorithm 1: Pseudo-code of RIME (Su et al., 2023) 

Initialize the rime population R 

Get the current optimal agent and optimal fitness 

While t ≤ T 

Coefficient of adherence E = (t/T)0.5 

If r2 < E 

Update rime agent location by the soft-rime search 

strategy 

End If 

If r3 < Normalizefitnessof(Si ) 

Cross updating between agents by the hard-rime puncture mechanism 

End If 

If F(Ri
new) < F(Ri) 

Select the optimal solution and replace the suboptimal solution using the positive greedy 

selection mechanism 

End If 

t=t+1 

End While 

` 

Where 

R The rime-population  

Si The rime-agents 

xij The rime-particles  

d The dimension of the population 

i The ordinal number of rime-agent 

j The ordinal number of rime-particle 

F(Si ): The fitness value of the agent 

Fnormr(Si) : The normalized value of the current agent fitness 

Rnew: The new position of the updated particle  

Rbest;j The best rime agent in the rime-population 

r1; r2; r3  A random number 
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COSθ : The direction of particle 

t: The current number of iterations  

T : The maximum number of iterations  

b : The environmental factor 

w :The number of segments of the step function  

h : The degree of adhesion 

Ubij; Lbij : The upper and lower bounds of the escape space 

E : The coefficient of being 

FEs: The current number of evaluations 

 

Cluster Validity Index 

The Cluster Validity Index assesses 

Compactness in clustering, quantifying how 

tightly data points are packed within each cluster 

(Rendon et al., 2023). Mathematically expressed 

as Compactness, this metric evaluates the 

cohesion of clusters, crucial for gauging the 

clustering algorithm's effectiveness. It computes 

squared distances between data points and 

cluster centroids, providing a quantitative 

measure of intra-cluster tightness. This concise 

approach ensures a clear understanding of spatial 

distribution and cohesion, guiding the evaluation 

of clustering performance (Rammal et al., 2015). 

Mathematically, it is expressed as Compactness 

(Eq5). This function considers both intra-cluster 

similarity and inter-cluster dissimilarity (Rendon 

et al., 2023).  

Compactness =
1

𝐾
∑𝑘=1

𝐾  
1

𝑛𝑘
∑𝑖=1

𝑛𝑘  𝑑(𝑥𝑖 , 𝑐𝑘)2   (5) 

Where  

𝐾 represents the number of clusters, 

𝑛𝑘 is the number of data points in cluster 𝑘, 𝑥𝑖 

denotes individual data points, 

𝑐𝑘 is the centroid of cluster 𝑘, and 𝑑(𝑥𝑖, 𝑐𝑘) is the 

distance between data point 𝑥𝑖 and centroid 𝑐𝑘. 

The goal of using this function in this work 

is to minimize this value, creating clusters that 

are internally cohesive and well-separated from 

each other, ensuring meaningful and distinct 

cluster formations in the clustering process. 

The proposed classification model: 

In the continuously evolving field of data 

science, the search for precision in classification 

methods has encouraged the examination of 

cutting-edge architectures and ensemble 

techniques. This research seamlessly integrates 

two distinct models: Model I, which is the 

Generative Neural Network, and Model II, which 

is a hybrid architecture that combines 

Convolutional Neural Networks (CNN) with 

Long Short-Term Memory networks (LSTM). 

The objective is to identify clusters within the 

intricate "order region." The combination of 

these models is arranged through the strong 

ensemble learning framework, which includes 

advanced techniques such as bagging, boosting, 

and stacking. 

In the specific context of this research, the 

ensemble approach intricately combines the 

generative capabilities of Model I with the 

spatial-temporal expertise demonstrated by 

Model II. Ensemble learning has proven to be a 

powerful technique in machine learning, 

enabling the combination of diverse models to 

enhance predictive performance. In this study, 

we employed ensemble learning to 

synergistically integrate two distinct models: a 

Generative Neural Network (Model I) and a 

Convolutional Neural Network-Long Short-

Term Memory (CNN-LSTM) hybrid (Model II). 

The integration was executed through three 

ensemble strategies: Bagging (utilizing Random 

Forest), Boosting (employing Train AdaBoost), 

and Stacking (leveraging Logistic Regression). 

This calculated fusion is achieved through the 

precise implementation of collaborative learning 

strategies, namely bagging, boosting, and 

stacking. 

 The ultimate goal is to develop a 

comprehensive classification framework that is 

adept at deciphering the complex clusters within 

the discerning domain of the "order region." This 

collaborative framework is dedicated to 

predicting the risks associated with late 

deliveries within the intricate network of the 
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supply chain, along with an exhaustive 

exploration of tailored strategies for efficient risk 

management and mitigation. 

Model I, the Generative Neural Network, 

serves as the initial foundation of our ensemble 

approach. This model possesses the unique 

ability to generate data that closely resembles the 

training set, thus providing a novel perspective 

on the classification of the "order region." By 

leveraging generative adversarial networks or 

variational autoencoders, Model I captures the 

intricate patterns within the order region, thereby 

facilitating a nuanced understanding of the 

underlying data distribution. 

Complementing the generative capabilities 

of Model I, Model II adopts a hybrid architecture 

that combines the strengths of Convolutional 

Neural Networks (CNN) and Long Short-Term 

Memory networks (LSTM). This design is 

particularly adept at handling both spatial and 

sequential dependencies, making it highly 

suitable for the multifaceted nature of order 

region data. In other words, this proposed 

architecture excels in learning hierarchical 

features and capturing temporal dependencies, 

making it a valuable component in our ensemble 

framework.  

 The CNN-LSTM hybrid not only extracts 

spatial features but also captures temporal 

patterns, ensuring a comprehensive 

representation of the clusters within the "order 

region." 

The synergy between Model I and Model II 

is harnessed through ensemble learning, a 

strategic amalgamation of diverse models aimed 

at enhancing classification performance. This 

ensemble methodology encompasses three key 

techniques: bagging, boosting, and stacking (see 

figure 03, figure 04, and figure 05, respectively). 

Bagging, short for Bootstrap Aggregating, 

involves training multiple instances of each 

model on distinct subsets of the training data 

independently, and then aggregating their 

predictions. The combination is performed 

through averaging or voting, which harnesses the 

collective wisdom of the ensemble to enhance 

overall model robustness and generalization 

performance.  Therefore, this approach has the 

ability to mitigate the issue of overfitting and 

increase the stability of the classification. To 

implement the Bagging strategy, we employed 

the Random Forest algorithm. In our 

implementation, the combined predictions from 

Model I and Model II are used to train a 

RandomForest classifier, offering an ensemble 

approach that leverages both the predictive 

power of deep neural networks and the 

robustness of a RandomForest model for 

improved overall performance. 

Boosting, on the other hand, takes 

advantage of sequential training of Model I and 

Model II. Each model focuses on correcting the 

misclassifications made by its predecessor, 

progressively refining the overall accuracy of the 

ensemble. The idea is to combine the predictions 

of weak learners, which are our base models, in 

an iterative process. It focuses on correcting 

errors made by previous learners by assigning 

higher weights to misclassified instances. The 

final model is a weighted combination of all 

weak learners, resulting in a strong, more 

accurate model. AdaBoost is a popular boosting 

algorithm that adapts over time and is effective 

in improving performance, especially in 

challenging situations, while reducing 

overfitting. 

Finally, stacking is employed to combine 

the predictions of both models. A meta-model is 

trained to weigh the contributions of Model I and 

Model II, leveraging their respective strengths to 

produce a cohesive and robust classification 

outcome. In the implementation level, the 

stacking ensemble technique is designed by 

training a meta-model (Logistic Regression) on 

the predictions of the two base models. The base 

model predictions for both training and testing 

datasets are combined, and a logistic regression 

meta-model is trained on this combined 

prediction matrix. Finally, the performance of 

the stacked model is evaluated using accuracy on 

the testing dataset. 
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Fig. 3 : The general framework of the ensemble learning based on bagging. 

 

Fig.  4 : The general framework of the ensemble learning based on stacking. 

 

Fig. 5 : The general framework of the ensemble learning based on boosting. 
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RESULTS 

The results included in Table 1 offer a 

detailed analysis of the performance of different 

models, each assessed across various metrics. 

Among the ensemble learning (EL) approaches, 

EL-stacking emerges as the top performer in 

terms of accuracy, achieving a notable 0.926. 

This result suggests that the stacking ensemble 

method excels in making accurate predictions of 

the target variable. 

The precision score is another significant 

performance metric that indicates the proportion 

of actual positive observations among all 

instances predicted as positive. In terms of this 

metric, both EL-bagging and EL-boosting 

exhibit high values at 0.946, indicating a strong 

ability to correctly identify positive instances, i.e. 

existence of risk and precisely identifying its 

level. EL-stacking closely follows, with a 

precision of 0.9186. This precision metric 

underscores the ensemble methods' proficiency 

in accurately predicting positive outcomes. In 

our specific multi-classification scheme, this 

means making accurate predictions for each 

class, ensuring that the model correctly assigns 

the input data to the appropriate class labels, i.e., 

risk level. Furthermore, the F1-score, derived 

from both precision and recall scores, serves as 

an effective measure for assessing the overall 

accuracy of a classification model. Examining 

the F1-score, EL-stacking leads the ensemble 

models with a score of 0.9175, highlighting a 

balanced performance between precision and 

recall. EL-boosting and EL-bagging also 

demonstrate strong F1-scores, reinforcing their 

effectiveness in classification tasks. 

For regression-oriented metrics, EL-

stacking and EL-bagging showcase the lowest 

Mean Squared Error (MSE) and Mean Absolute 

Error (MAE) at 0.11 and 0.09, respectively. This 

signifies their superior performance in 

minimizing prediction errors for regression 

tasks. While MSE and MAE are typically 

associated with regression tasks, we have 

repurposed them for this multi-classification 

context to assess the degree of deviation between 

predicted risk levels and actual class labels, 

providing insight into the magnitude of 

misclassifications. MSE penalizes larger errors 

more heavily due to the squaring of differences, 

which means that high values of MSE indicate 

that the model misclassifies very high-level risk 

with very low-level risk. This helps identify 

cases where the predicted risk significantly 

deviates from the actual risk, regardless of the 

specific classes. In the other hand, MAE 

measures the average absolute difference 

between predicted and actual values, and it is less 

sensitive to outliers than MSE.   

The Receiver Operating Characteristic 

Area Under the Curve (ROC-AUC) score 

provides an interpretation as the probability of a 

classifier correctly ranking a randomly chosen 

positive observation higher than a randomly 

chosen negative one. This metric is calculated by 

determining the area under the receiver operator 

characteristic curve. The AUC scores of all 

models fall in a good range, indicating an 

excellent accuracy. Notably, EL-Stacking 

demonstrates a perfect discriminatory power 

with a value equal to 1. These results indicate 

excellent performance in distinguishing between 

positive and negative instances in binary 

classification mode. Analyzing predictive 

capability, EL-stacking, and EL-boosting exhibit 

high R-squared values (0.8728 and 0.857), 

indicating strong explanatory power. Similarly, 

both models demonstrate high explained 

variance, emphasizing their ability to account for 

a substantial portion of the target variable's 

variance. 

In terms of computational efficiency, EL-

boosting stands out with the lowest runtime at 

7.24, suggesting efficient model training. EL-

stacking follows closely with a runtime of 9.01, 

while EL-bagging and the CNN-LSTM model 

have longer runtimes. 
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Table 1 : Performance Metrics of Late Delivery Prediction Framework 

 EL-bagging EL-stacking EL-boosting CNN-LSTM GAN 

Accuracy 0.906 0.926 0.906 0.915 0.908 

Precision 0.946 0.9186 0.946 0.916 0.892 

F1-Score 0.915 0.9175 0.9154 0.916 0.886 

MAE 0.1 0.09 0.104 0.09 0.1 

MSE 0.125 0.11 0.125 0.09 0.12 

AUC 0.98 1 0.98 0.98 0.98 

R-squared 0.857 08728 0857 0.87 0.866 

Explained 

Variance 
0.86 0.8729 0.8609 0.87 0.864 

Run Time 11.27 9.01 7.24 5.18 2.71 

 

 

DISCUSSION 

Our research introduces a novel framework 

methodology for predicting the risk of late 

delivery in supply chains, incorporating 

advanced clustering techniques and deep 

learning models. In the domain of supply chain 

risk classification, the evaluation of model 

performance is critical for effective risk 

management and resilience. Among the 

ensemble learning models, EL-stacking stands 

out as a comprehensive performer, excelling in 

accuracy (0.926), precision (0.9186), F1-score 

(0.9175), and discriminatory power (1). The 

accurate classification of supply chain risks is 

fundamental to building resilience. So, for a 

broad comparison and considering the fact of 

using different datasets and models, we analyse 

our finding in relation to previously published 

papers.  

(Sarbas et al., 2013) trained three models, 

namely logistic regression algorithm, random 

forest classifier algorithm, and Gaussian Naïve 

Bayes. The random forest model exhibited the 

highest AUC score (0.929). Assessing 

sensitivity, the recall score was highest for the 

random forest model (0.833), followed by 

logistic regression (0.762) and Naïve Bayes 

(0.577). The random forest model outperformed 

others with an F1-score of 0.859, compared to 

logistic regression (0.773) and Naïve Bayes 

(0.685). Their results collectively imply the 

strong performance of the random forest model 

across various evaluation metrics. However, 

generally for big datasets, deep learning that we 

have used outperforms classical machine 

learning used in this paper. Another paper, 

dealing particularly with the challenge of data 

imbalance, employs the Area Under the Curve 

(AUC) score as the performance metric for risk 

prediction (Thomas and Panicker, 2023). The 

comparative analysis is conducted on K-Nearest 

Neighbour, Random Forest, Logistic Regression, 

and Support Vector Machine, while employing 

three oversampling methods: random 

oversampling, SMOTE, and SMOTE Tomek. 

The results showed that the Random Forest 

model, combined with Synthetic Minority Over-

sampling Technique (SMOTE) and Tomek link 

demonstrates superior performance with an AUC 

score of 0.80. Random forest also demonstrates 

superior performance in predicting delivery 

delays in another paper when compared to 

decision tree and naïve bayes (Zaghdoudi et al., 

2022). It outperforms other machine learning 

models with an accuracy of 76.02%, precision of 

76.43%, and F1 score of 77.96%.  

EL-stacking's ability to balance precision, 

recall, and overall accuracy positions it is a 

promising model for supporting resilient supply 

chain decision-making. Resilience is not only 

about preventing risks but also effectively 

responding to and recovering from disruptions. 

The ensemble learning approach, by integrating 

diverse models, showcases adaptability and 

robustness in capturing the complexity of supply 

chain risk dynamics. 

EL-boosting demonstrates efficiency in 

runtime and strong discriminatory power as 

measured by the AUC. While EL-bagging and 
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CNN-LSTM deliver respectable performance, 

their accuracy and precision slightly trail behind 

EL-stacking. 

The choice of the optimal model depends 

on specific task requirements, necessitating a 

balance between accuracy, interpretability, and 

computational efficiency. Our findings 

underscore the potential of the proposed 

framework in enhancing risk prediction accuracy 

through feature engineering, exploring new 

variables, and considering additional data 

dimensions. Addressing the interpretability 

challenge inherent in deep learning models is 

crucial, and future research should focus on 

developing methods to clarify decisions for 

practitioners and stakeholders. Furthermore, 

integrating uncertainty analysis in predicting 

supply chain risk late delivery represents a 

promising avenue for enhancing the robustness 

of our methodology. 

In conclusion, our research not only 

introduces an innovative approach to predicting 

supply chain risk but also provides valuable 

insights into the performance trade-offs among 

different ensemble models. The proposed 

framework lays the foundation for future 

advancements in risk prediction accuracy, 

interpretability, and uncertainty analysis within 

the landscape of supply chain management. 

CONCLUSION  

In this research, the objective was to 

mitigate the resilience challenge in the global 

supply chain by introducing a novel framework 

designed to address the complexity of predicting 

late delivery risks in supply chain networks. This 

was achieved through the application of an 

innovative deep learning model. Notably, the 

model operates as a black box, making it 

challenging to discern the key features 

influencing delivery risk. To overcome these 

limitations, further research should prioritize the 

interpretation of deep learning models using 

explainable artificial intelligence. It is essential 

to evaluate the applicability and effectiveness of 

the proposed ensemble learning techniques 

(bagging, boosting, stacking) across diverse 

supply chain environments. The model's 

performance should be tested in various 

environments and prediction problems within the 

realm of supply chain management. 

The proposed framework integrates 

clustering and multiclassification 

methodologies, incorporating hyperparameter 

tuning and a novel metaheuristic, RIME, in the 

clustering phase. The multiclassification phase 

harnesses the power of five deep learning 

models—GAN, CNN-LSTM, ensemble learning 

through bagging, stacking, and boosting—to 

enhance the precision of late delivery 

predictions. 

In conclusion, this research not only 

addresses the challenge of late delivery risks in 

global supply chains but also lays the foundation 

for a transformative approach to proactive risk 

management. The integration of advanced 

clustering techniques, metaheuristic 

optimization, and a suite of deep learning models 

signifies a pioneering step towards building 

resilience in supply chain networks. As the 

landscape of supply chain management 

continues to evolve, our framework stands as a 

testament to the potential of innovative 

methodologies in navigating the complexities of 

modern supply chains and fortifying them 

against disruptions. 
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